
1

2

Table of Contents
Virtualization ... 3

Installing Kali Linux .. 8

Introduction to Linux ... 15

Linux Directories ... 15

Linux Commands ... 16

File Commands .. 17

Operators in Linux ... 19

Commands in APT package (advanced Package Tool) ... 19

Linux Users .. 20

Text Manipulation ... 23

Grep ... 23

Word Count ... 25

Sort and Uniq .. 26

Cut ... 27

Head and Tail ... 27

Text Combining Commands .. 27

Regex in Awk, Sed, and Cut ... 31

Streams, Redirection, and Pipes ... 32

Searching in Linux ... 34

The find Command .. 34

Network Services in Linux ... 37

Common Network Services in Linux ... 37

Configuring Network Services ... 38

Security Considerations .. 39

Linux Permissions .. 40

Bash Scripting and Automation... 44

Variables .. 44

The Declare Command .. 44

Conditions - The IF Conditions .. 45

Loops ... 47

For Loop .. 47

While Loops ... 49

Functions ... 50

The tr Command ... 51

3

Virtualization

Virtualization is a technology that allows you to create multiple simulated environments or dedicated

resources from a single, physical hardware system. Essentially, it lets you run multiple operating

systems and applications on a single physical machine as if they were running on separate hardware.

Types of Virtualization

1. Hardware/Platform Virtualization: This is the most common form, where a hypervisor (like

VMware's ESXi, Microsoft's Hyper-V, or Oracle's VirtualBox) runs directly on the physical

hardware (Type 1 or bare-metal) or atop an operating system (Type 2 or hosted). The

hypervisor creates, runs, and manages multiple virtual machines (VMs) that can have different

operating systems.

2. Desktop Virtualization: This involves separating the physical machine from the OS to create a

virtual desktop that the user can access remotely. Examples include VMware Horizon View and

Citrix Virtual Apps and Desktops.

3. Software Virtualization: This involves running multiple versions of an application on a single

OS, ensuring they don't interfere with each other. Containers, like Docker, are a popular form

of software virtualization.

4. Memory Virtualization: This pools the physical memory from multiple servers to create a

virtualized memory pool shared across multiple machines.

5. Storage Virtualization: This pools physical storage from multiple network storage devices so

that it appears as a single storage device. It can be done at the block level or the file level.

6. Network Virtualization: This divides available bandwidth into independent channels that can

be assigned to servers or devices in real-time. It can be categorized as either external

(combining many networks into a virtual unit) or internal (breaking network functionality into

manageable parts).

Advantages of Virtualization

1. Resource Efficiency: Multiple VMs can run on a single physical machine, maximizing resource

utilization.

2. Cost Savings: Reduces the need for physical hardware systems, leading to savings in hardware

costs, energy consumption, and maintenance.

3. Isolation: VMs are isolated from each other. If one crashes, it doesn't affect others.

4. Flexibility and Agility: Quickly deploy, clone, and migrate VMs based on demand.

5. Snapshot and Cloning: Capture the state of a VM at a particular point in time, allowing for

easy backup and recovery.

6. Security: Potential security breaches can be isolated to a particular VM without affecting the

host system or other VMs.

4

Challenges of Virtualization

1. Overhead: Virtualization introduces a layer of overhead due to the hypervisor.

2. Complex Management: Managing virtual environments can become complex, especially at

scale.

3. Security Concerns: If not properly configured, the hypervisor can be a point of vulnerability.

4. Licensing: Software licensing can become complex in virtualized environments.

Installing Workstation on a Windows Host
Log on to the Microsoft Windows host as an administrator user. If installing from a CD, choose Run
from the Start menu and enter D:\setup.exe, where D: is the drive letter for the CD-ROM drive. If you
are installing from a downloaded file, choose Run from the Start menu, browse to the directory where
you saved the downloaded installer file, and run the installer. (The filename is
VMwareWorkstation.exe). Click Next to dismiss the Welcome dialog box.

Acknowledge the end-user license agreement. Select I Accept the terms in the License Agreement
option, then click Next.

5

Choose the directory in which to install VMware Workstation.

To install in another directory, then the default, click Change and browse to the directory of choice. If
the directory does not exist, the installer creates it. Click Next. Do not install VMware Workstation on
a network drive. User Experience Settings. Select Check for updates and press Next.

6

Application Shortcuts preference: select where to place the shortcuts on the system.

Click Install to begin the installation.

7

Click Finish to complete the installation process.

Launch VMware Workstation, double click on the icon on the desktop to launch the application.

8

Installing Kali Linux
Click file -> New virtual machine or Create a New Virtual Machine.

Select Custom.

9

Choose the virtual machine hardware compatibility.

Select the installer disk image file for operating system installation, then click Next.

10

Select Linux as a Guest operating system. Click Next.

Specify the VM name and location.

Specify the number of processors and the number of cores per processor for this virtual machine.
Using one CPU is enough for Kali Linux.

11

Set the Kali Linux with 2GB of memory.

12

Select Network type; choose NAT.

Select a disk. Click Create a new virtual disk and then click Next.

13

Select Store virtual disk as a single file if there are no limitations to the file system. Don't check the
box Allocate all disk space now if you don't want the disk to consume all provisioned disk space.

Specify where you want to store the virtual disk file, and click Next.

14

Select Customize hardware if necessary, and click Finish to create the VM.

15

Introduction to Linux
Learning to work with Linux is an important skill to master. This chapter will go on a profound journey
of understanding and managing the filesystem, users, and administration, learning to work with the
Terminal, configuring and installing packages, and writing scripts with variables. Also, loops and
commands to manipulate files and text logs, learn about data streams and use them for the purpose.

Terminal
The Terminal is a window you get when you open the command line interpreter. Inside the Terminal,
you have the shell related to the specific language it supports. In Kali Linux, the Terminal supports
Bash, python, and others.

Shell
The shell is the command interpreter in an operating system such as Unix or GNU/Linux; it is a program
that executes other programs. When the shell has finished running a program, it sends an output to
the screen's user, the standard output device.

The Terminal-Emulator Concept
A terminal emulator is a tool that emulates a shell while running commands and launching tools from
the graphical environment. Each distribution has its way of opening the Terminal Emulator.

Linux Directories
/ - That is the root folder of the system. Everything on Linux is located under that directory.
/bin - This directory stores Linux commands (such as ping, ls, cp, and more) used by all users.
/dev - Driver, hardware, and system files.
/var - This directory contains files that are predicted to change in size and content while the systems
run, like log files, for example, /var/log.
/etc - This directory contains different settings/configurations of the OS.
/lib - Directory containing libraries (shared code between applications so they could run) for critical
software from /bin folder.
/boot - This directory contains files needed for the system activation.
/tmp - Directory containing temporary files; these files get deleted once the system is turned off and
restarted; in general, they disappear after a few days.
/usr - Directory containing applications and information for users to access and operate.
/home - The personal folder of each user.
/srv - This directory contains data for system-provided services.

16

Linux Commands

ls Displays the folder content. The command ls -a will also show hidden files (with '.' for

the first character). The command ls -l will show each file's information, such as size,
permissions, and a line for each file.

cd Change folder.
cd .. One folder back.
cd / Move to the root folder.
cd ~ Move to the home folder of the user.
history Command history of the user.
passwd Change user password.
touch Creates an empty file.
nano File editor, in case the file doesn't exist - the command will create it.
cat Filename Displays file content.
cp A B Copies file A to location B.
mv A B Moves file A to location B. It can also be used to rename the file.
clear Clears the terminal screen.
pwd Prints the full pathname of the current working directory.
echo "hello" Creates output 'hello'.
rm -rf A Removes folder A.
locate Search a file in the database, and make sure to update the index beforehand.
reboot Restart the OS without confirmation or warning.
poweroff Shut down the OS without confirmation or warning.
man A Extended guide for the "A" command.
uptime Shows the overall time the system is on.
whoami Shows the currently connected user.
sort A Displays sorted lines in file "A" alphabetically.
head Display the first ten lines of the file.
tail Displays the last 10 lines of a file.
nl Displays file content with numbered lines.
ping Same as in Windows used to check the communication between computers.
netstat -tapn Displays information on the active connection on the computer.
ifconfig Displays the local net card details, including the internal IP address.
chmod Changes permissions for the file to grant full permissions to all users and all files in a

directory we are in; type: chmod 777 *
grep Displays lines where the desired text is located.

17

File Commands
cp - used to copy files and directories.

Change the name of the file using cp.

mv - used to move files from one location to another.

rm - deletes files.

18

cd - traversing to a specified directory.

touch - creates an empty file.

pwd - prints the current directory.

ls - lists all files and directories in the current location.

mkdir - creates a directory.

lsof - lists all recent files opened by the system.

You often need to view files or portions of them at the Linux command line. Besides, you may need to
employ tools that allow you to gather data chunks or file statistics for troubleshooting or analysis
purposes. The utilities in this section can assist in all these activities.

19

Operators in Linux

> Saves output into a file and deletes current content if it exists.
>> Adds output to the end of the file, for example, echo "hello">> text.txt
&& Executes the first command. If successful, executes 2nd command.
; Executes the first command and, in any case, executes 2nd command.
| Pipeline - Afterwards, will follow commands executed on the original output before it.

Commands in APT package (advanced Package Tool)
apt-get update Updates install packages from configured servers.
apt-get upgrade Updates the installed packages.
apt-get dist-upgrade Performs system updates.
apt-get install PACKAGE Install package.
apt-get remove PACKAGE Removes package.
apt-cache show PACKAGE Displays the description of a package.

Before using apt-get, a download source must be set up. Otherwise, the system won't know where to
get files from otherwise.

If needed, edit the file /etc/apt/sources.list (this is the link the OS goes to get files and updates) and
add relevant sources.

Each package in Linux has a link saved in the index. When we update Linux, more links and existing
packages will also be updated.

The /etc/apt/sources.list file contains Linux sources. For every update, the system goes to these links
and updates. It is, therefore, important to check that the sources are up to date. To check if the sources
are OK, google "kali linux sources" and make sure the content is also set up in the sources.list file.

20

Linux Users
Linux is a multiuser operating system. A typical administration task in a multiuser environment is
creating new users, modifying existing users, or removing users. For ease of access management, users
are assigned to groups. Creating, deleting, and changing groups is also another common
administration task.

In a typical Linux system, some users aren't allowed to execute all commands. For that, we have the
sudo command, which allows for full permission and privileges in a specific and temporary manner.
The root is the Admin/Superuser full privileges account that does not require the sudo command to
execute administrator-only commands, such as the reboot command. The sudoers (in /etc/sudoers)
contain users who can use the command sudo for special permission. Also, the sudo packages come
with an automatic tool for editing and testing the sudoers file; the commands are: visudo

Understanding the Sudoers File Configurations

• Defaults env_reset - Resets the terminal environment after switching to root

• root ALL=(ALL) ALL - Allows root to do everything on any machine as any user.

• %admin ALL=(ALL) ALL - Allows anybody in the admin group to run anything as any user

21

Passwd File
The passwd file is located at /etc/passwd/. The file is a text file containing the attributes of each user
or account on a Linux computer. The permissions for /etc/passwd are by default setting so that it is
world-readable, that is so that any user on the system can read it. The file can easily be read using a
text editor or with a command such as cat, which is commonly used to read files, i.e., The /etc/passwd
contains one entry per line for each user (user account) system. All fields are separated by a colon (:)
symbol.

1. Username: The username for login should be between 1 and 32 characters in length.

In this case, the username is root.

2. Password: An x character indicates that the encrypted password is stored in the /etc/shadow file.
In this case, The password is stored in the shadow file.

3. User ID (UID): Each user must be assigned a user ID (UID). UID 0 (zero) is reserved for root, and
UIDs 1-99 are reserved for other predefined accounts. Further, UID 100-999 is reserved for
administrative and system accounts/groups.

In this case, Since the user is the root, the UID is 0.

4. Group ID (GID): The primary group ID (stored in /etc/group file) is the same as the UID; the GID 0
is reserved for the root group.

In this case, The group is 0.
5. User ID Info: The comment field adds extra information about the users, such as the user's full

name, phone number, etc.

6. Home directory: The absolute path to the user’s directory when they log in. If this directory does
not exist, then the user's directory becomes.

In this case, The user's home folder is /root.

7. Command/shell: The absolute path of a command or shell (/bin/bash). Typically, this is a shell.
In this case, The user uses the fish shell.

22

Shadow File
The /etc/shadow file stores the actual password in an encrypted format (more like the password's
hash) for the user's account with additional user password properties. All fields are separated by a
colon (:) symbol. Each user listed in the /etc/passwd file contains one entry per line.

1. Username: The login username.
2. Password: The encrypted password. The password can include special characters, digits,

lowercase alphabetic, and more. Usually, the password format is set to $type$salt$hashed.
The types that are used on GNU/Linux are as follows:
a. 1 is MD5
b. $2a$ is Blowfish
c. $2y$ is Blowfish
d. 5 is SHA-256
e. 6 is SHA-512

3. Last password change (last changed): Days since Jan 1, 1970, that password was last changed.
4. Minimum: The minimum number of days required between password changes, i.e., the number

of days left before the user can change their password.
5. Maximum: The maximum number of days the password is valid (after that user is forced to change

their password).
6. Warn: The number of days before the password expires that the user is warned that their

password must be changed.
7. Inactive: The number of days after a password expires that the account is disabled.
8. Expire: days since Jan 1, 1970, that account is disabled.

23

Text Manipulation
A filter is a program that reads standard input, operates it, and writes the results to standard output.

Grep
The grep command is a UNIX command utility that can find specific patterns.

cat /etc/passwd | grep kali

Grep Command-line Flags/Options
Furthermore, the grep command has a few key flags/options. The --color option. By using this option,
the successful matches highlight—the case-insensitive flag. Specify the -I flag to a case-insensitive
match.

The "before" and "after" flags. By default, the grep command will show us the line with the successful
match. If we want to see the lines before or after, we could use the "-A, -B, -C" flags.

-A Will print a set number of lines after the match.

-B Will print a set number of lines before the match.

-C Will print a set number of lines in both directions of the match.

24

Awk
The awk command breaks each line of input passed into fields. By default, a field is a string of
consecutive characters delimited by whitespace, though there are options for changing this.

By using this command, we filtered the third column of the file. Also, filter multiple columns.

And even add a custom delimiter between them.

If the line has three words, it stores $1, $2, and $3, respectively.

25

Sed
The sed command in UNIX can function as searching, finding and replacing, insertion, or deletion.

The "s" specifies the substitution operation. The "/" are delimiters. The "world" is the search pattern,
and the "earth" is the replacement string.

Word Count
Print newline, word, and byte count for each FILE and a whole line if more than one FILE is specified.

-c print the byte counts
-m print the character counts
-l print the newline counts
-w print the word counts

Count the number of lines in the file using the -l flag.

Count the number of words using the -w flag.

Or count the amount of the bytes in the file.

26

Sort and Uniq
The UNIX commands sort and uniq to order and manipulate data in text files. The sort command
accepts input from a text file or standard output, sorts the input by line, and outputs it. The sort
command will sort the given input alphabetically and numerically, prioritizing any given number by
default.

Running the sort command.

The uniq command takes input and removes repeated lines. Because uniq removes identical adjacent
lines, it is often used in conjunction with the sort command to remove non-adjacent duplicate lines.
This combination will sort the input and then count the repeating occurrences.

27

Cut
The cut command in UNIX is a command for cutting the sections from each line of files and writing the
result to standard output. The primary usage of the cut command is cutting input by selecting specific
fields. To select a field, we use the -f flag.

Head and Tail
The head command outputs the first part of the files, and the tail command is used to output the last
part of the files. By default, the head and tail commands will display the first or last ten lines from the
file. Specify how many lines we want to display from the beginning of the file or the end; use the -n
flag. You often need to view files or portions of them at the Linux command line. Besides, you may
need to employ tools that allow you to gather data chunks or file statistics for troubleshooting or
analysis purposes. The utilities in this section can assist in all these activities.

Text Combining Commands
Putting together small text files for viewing on the screen and comparing them is helpful. The
command covered will do just that. The paste is a command that allows the merging of lines of files
horizontally. Its output lines consist of each file's corresponding lines specified as an argument,
separated by tabs.

The cat command spits the entire text file to the screen. We have user and password files separately,
and we want to display them side-by-side.

28

Regex in Grep
The name grep stands for "global regular expression print". This means that grep can see if the input
it receives matches a specified pattern. The command grep has the useable extended regular
expressions. Use the -E flag or the egrep command (same thing) to use these extended regular
expressions.

Grep - Anchor Matches
Anchors are special characters that specify where a match must occur to be valid in the line. The first
ones are the "^" and the "$" anchors. The "^" anchor stands for anything starting with a particular
pattern.

Use the syntax to filter each string that begins with the letter "J".

In contrast, filter any string that ends with the letter "n" using the "$" anchor.

Another useful anchor is the "*", which means repeating the previous character or expression zero or
more times.

29

To filter any string with zero or more of the string "ap" and then "le".

Grep - Grouping
Placing a group of characters within brackets specifies that the character can be anyone character
found within the bracket group. The first method is "[abc]" - meaning that any single character will be
filtered.

The second method is "[a-d]" - which will filter any character in a range.

Even use anchors while using grouping, for example, ^[a-c]. For example, find any IPs in the pattern
1XX.4X.XX.XXX.

30

Use sort and uniq commands to filter the repeating IP addresses.

Grep - Times
This regex is used to find a match that repeats more than once. The first one is "\{n\}", which is used
to filter strings that repeat "n" times exactly.

See that the grep command matched the number "1" repeated twice. Furthermore, use the expression
"\{n,m\}", which will match any string from n to m times.

The grep command matched any time the number "1" appeared once or twice. The last usage of
"times" in grep is when we need the grep command to match at least n times; use the syntax:
 "\{n,\}".

The grep command matched any occurrence of the number "2".

31

Grep - Special Expressions
In grep, the '\' character (backslash) takes a special meaning when followed by certain ordinary
characters.

"\s" White Space
"\S" non-White Space
"\d" digit character
"\D" non-digit character
"\w" Word
"\W" non-Word (punctuation, spaces)

Regex in Awk, Sed, and Cut
Like the grep command, a few other commands have a unique Extended Regular Expression.

Like the grep command, the awk command can filter a specific pattern; what is unique is specifying a
particular column. It is worth mentioning that the command sed is also capable of pattern matching.

Like the grep command anchors, the same characters can be used in the commands awk and sed. For
example, filter any IP address starting with "192".

Or any IP address ending with the number "3".

32

Streams, Redirection, and Pipes
Data streams are the raw materials that command-line tools and Linux utilities use to receive and send
data.

Three Types of Streams

Stdin (0) - this is the stream that programs use to read input data. For example, the commands dir and
ls can use command-line arguments, but they work without stream data input.

Stdout (1) - this is the stream to which programs output their data. The best example is the command
cat. When you use a file, it will print the files in contact with the user's screen to see.

Stderr (2) - these are the stream programs used for errors. It's also printed on the screen like stdout
for diagnostics and troubleshooting.

Redirection
The redirect capabilities give you a handy toolbox to accomplish tasks faster and improve productivity.
Redirect any of the data streams.

> overwrite
>> append

Save the command output into a text file using the > character.

Use the cat to see the file output.

33

What will happen when I do > again?

The file contents were replaced with the output of the echo I wrote. Suppose I want to append text to
a file; use >>. The new IP address is added to the last line of the file.

Pipes
A pipe is a form of redirection used in Linux and other Unix-like operating systems to send the output
of one command/program/process to another command/program/process for further processing. For
example, read a file's content and then utilize one of the text manipulation tools we learned before.

The Linux pipe is the character: |

What if we want to search for IP addresses starting with 192. And see that on the screen?

The difference between | and || is:
| - (Condition 1 | Condition 2): checks both cases even if case 1 is true
|| - (Condition 1 || Condition 2): doesn't bother to check the second case if the first one is true.

34

Searching in Linux
Linux, being a powerful and flexible operating system, offers a variety of tools to search for files and
directories. Two of the most used tools for this purpose are find and locate. In this article, we'll explore
the intricacies of these tools, their differences, and how to use them effectively.

The find Command
The find command is a versatile tool that allows users to search for files and directories based on
various criteria such as name, type, size, and more. It searches the directory tree rooted at each given
file name by evaluating the given expression from left to right, according to the rules of precedence,
until the outcome is known.

Basic Usage
The basic syntax of the find command is: find [path...] [expression]

For example, to find all files named all the text files in the current directory and its subdirectories:

Commonly Used Options

• -name: Search for files based on their name.
• -type: Specify the type of file (e.g., f for regular files, d for directories).
• -size: Search for files based on their size.
• -mtime: Search for files modified within a specified number of days.
• -user: Search for files owned by a specific user.

35

Examples
1. Find all directories named "docs":

find / -type d -name "docs"

2. Find all files larger than 100MB:

find / -type f -size +100M

3. Find all files modified in the last 7 days:

find / -type f -mtime -7

4. Find all files owned by the user "john":

find / -type f -user john

Combining Expressions
You can combine multiple expressions using logical operators:

• -and: Both the preceding and following expressions must be true (this is the default behavior).
• -or: Either the preceding or the following expression must be true.
• -not: Negates the following expression.

For example, to find all .txt files modified in the last 7 days but not owned by "john":

find / -type f -name "*.txt" -mtime -7 -not -user john

The locate Command
While find searches the filesystem in real-time, locate uses a prebuilt database of files and directories
to provide faster search results. This database is typically updated daily using the updatedb command.

Basic Usage
The basic syntax of the locate command is: locate [options] pattern

For example, to locate all files and directories named "example.txt":

locate example.txt

Commonly Used Options

• -i: Ignore case distinctions.
• -l: Limit the number of results.
• -b: Match only the base name against the specified patterns.

36

Examples
1. Locate all files and directories named "config" (case-insensitive):

locate -i config

2. Limit the search results to 10 entries:

locate -l 10 example.txt

Differences Between find and locate

1. Speed: locate is generally faster than find because it queries a prebuilt database. However,
this means that locate might not always have the most up-to-date information.

2. Real-time vs. Database: find searches the filesystem in real-time, while locate relies on a
database updated by updatedb.

3. Flexibility: find offers more flexibility in terms of search criteria and expressions.

37

Network Services in Linux
Linux, as a robust and versatile operating system, plays a pivotal role in the world of networking. From
simple file sharing to complex web services, Linux offers a wide array of network services that cater to
various needs. In this article, we'll delve deep into the realm of network services in Linux, exploring
their significance, common services, and configuration basics.

What are Network Services?
Network services refer to applications or processes that run on a server and provide functionalities to
other computers (clients) over a network. These services listen on specific ports and wait for incoming
requests. Once a request is received, the service processes it and sends back the appropriate response.

Common Network Services in Linux

1. SSH (Secure Shell)

• Purpose: Secure remote command execution and file transfer.
• Port: 22
• Key Software: OpenSSH

SSH allows users to securely connect to a remote machine. It encrypts the session, ensuring that
eavesdroppers cannot decipher the data being transmitted.

2. HTTP/HTTPS (HyperText Transfer Protocol/Secure)

• Purpose: Web services.
• Port: 80 for HTTP, 443 for HTTPS
• Key Software: Apache, Nginx, Lighttpd

These protocols are the backbone of the World Wide Web, serving web pages and other web content
to users.

3. FTP (File Transfer Protocol)

• Purpose: File transfer.
• Port: 21
• Key Software: vsftpd, ProFTPD

FTP is a standard network protocol used to transfer files from one host to another over a TCP-based
network.

4. DNS (Domain Name System)

• Purpose: Domain name resolution.
• Port: 53
• Key Software: BIND, dnsmasq

DNS translates human-friendly domain names (like www.example.com) into IP addresses.

5. SMTP (Simple Mail Transfer Protocol)

• Purpose: Email transmission.
• Port: 25
• Key Software: Postfix, Sendmail

SMTP is used to send emails between servers and from clients to servers for email submission.

38

6. NFS (Network File System)
• Purpose: File sharing over a network.
• Port: Varies, often 2049
• Key Software: nfs-utils

NFS allows a system to share directories and files with others over a network.

Configuring Network Services
While the exact configuration steps vary for each service, here's a general approach:

1. Installation: Use the package manager specific to your Linux distribution (e.g., apt for
Debian/Ubuntu, yum for CentOS) to install the desired service.

sudo apt install openssh-server

2. Configuration: Most services have configuration files located in /etc/ or a subdirectory thereof.
Edit these files to customize the service's behavior.

sudo nano /etc/ssh/sshd_config

39

3. Control the Service: Use the service command to start, stop, or restart the service.

sudo service ssh restart

4. Testing: After configuring a service, always test to ensure it's working as expected. For
instance, for SSH, you can use the ssh command:

ssh username@localhost

Security Considerations
When running network services:

1. Minimize Attack Surface: Only run necessary services. If a service isn't needed, disable it.

2. Regular Updates: Keep all services updated to patch vulnerabilities.

3. Use Firewalls: Restrict access to services by using firewalls. Only allow necessary ports and IP
addresses.

4. Monitoring: Regularly monitor logs and use tools like netstat or ss to check listening ports and

established connections.

40

Linux Permissions
Every file and directory in the Unix/Linux system is assigned three types of permissions.

User
A user is the owner of the file. By default, the person who created a file becomes its owner.
Hence, a user is also sometimes called an owner.

Group
A user- group can contain multiple users. All users belonging to a group will have the same
access permissions to the file. Suppose you have a project where several people require access
to a file. Instead of manually assigning permissions to each user, you could add all users to a
group and assign group permission to the file. These group members and no one else can read
or modify the files.

Other
Any other user who has access to a file. This person has neither created the file nor belongs to
a user group that could own the file. Practically, it means everybody else. Hence, when you set
permission for others, it is also referred to as set permissions for the world. To see permissions
of files and information in a more detailed way, type ls -l

Additionally, execute the same command for a specific file using ls -l FILENAME.

We have highlighted '-rw-r-r--' this code tells us about the permissions given to the owner, user group,
and others. The first '-' implies that we have selected a file .

Otherwise, if it were a directory, d would have been shown.

• Read the file

• Write or edit the file

• He cannot execute the file since the execute bit is set to '-'

41

chmod permissions filename. Use the chmod command, which stands for change mode. Set
permissions (read, write, execute) on a file/directory for the owner, group, and the world using the
command.

Syntax: chmod <option> file/folder

Each user can have different permissions for a file.
x executes
r read
w writes

The permissions are divided into numbers: 1, 2, and 4 are the base numbers of Linux, and from those
numbers, create the permissions.

Absolute (Numeric) Mode

Understanding file permissions by three-digit octal number.

In the window, we have changed the permission of the file 'kalissh' to '764'.

7 Read + Write + Execute (rwx) : file owner
6 Read + Write (rw -) : user group
4 Read (r - -) : everyone else

Permission Type Symbol Numeric Number

Execute x 1 1

Write w 2 2

Execute + Write x+w 1+2 3

Read r 4 4

Read + Execute r+x 4+1 5

Read + Write r+w 4+2 6

Read + Write + Execute r+w+x 4+2+1 7

42

Symbolic Mode
In the Absolute mode, you change permissions for all three owners. In the symbolic mode, modify the
permissions of a specific owner.

Operator Description

+ Adds permission to a file directory

- Remove permission

= Sets the permission and overrides the permissions set earlier

User Denotations Ownership

u user/owner

g group

o other

a all

• Current file permissions.

• Setting permissions to the other users.

• Adding 'execute' permissions to the user group.

• Removing 'read' permissions for the 'user'.

43

Changing Ownership and Group
For changing the ownership of a file/directory, use the command chown <user>.

To change the user and the group for a file or directory, use the command:
 chown <user:group> filename

44

Bash Scripting and Automation
Bash (AKA Bourne Again Shell) is a command shell primarily in Linux operating systems. A shell script
is a fully-fledged programming language in itself. It can define variables and functions and do
conditional execution of shell commands.

Start with creating an empty file for the first bash script.

nano firstscript.sh

Use "Shebang" to fully use the shell features and ensure that the shell will interpret the commands.

#!interpreter [arguments]

The interpreter is the full path to a binary file (ex: /bin/sh, /bin/bash), and the arguments are optional.
Without this line, the script will be launched via the shell from which the script was called; for example,
if we wrote a script based on Bash shell features, but the user runs the script from the ksh shell, the
script will run as a ksh shell script, and therefore the script will not work.

#!/bin/bash

As we learned before, any executable (runnable) file in the Linux environment must have the
appropriate executable permissions, allow any user to read, write, and execute the script:

chmod firstscript.sh

Variables
A variable is a character string to which we assign a value. The value assigned could be a number, text,
filename, device, or other data type. A variable is nothing more than a pointer to the actual data. The
shell enables you to create, assign, and delete variables. The name of a variable can contain letters (a
to z or A to Z), numbers (0 to 9), or the underscore character (_). Unlike many other programming
languages, Bash does not segregate its variables by "type"; therefore, any declared variable is
considered a "character string" used according to its context; define a variable as follows:

var=”value”

To access the value stored in a variable, type the variable name prefixed with a dollar sign ($); for
example, in the previous demonstration, we set a variable named var and assigned the value of
"value".

echo $var

It is essential to notice that in the Bash shell, accessing variables using a plain syntax of "$var" is a
simplified version of using curly braces, for example, "${var}". If they are the same, why do curly braces
exist? Well, the "curl braces" can do things the "simplified" version can't, for instance, reference an
array index or remove a substring.

The Declare Command
The declare command is used to set variable values and attributes. By default, all variables are set as
a string and as readable.

declare [flag] [variable]

45

To enable the attribute, use a "-" addition to the flag, and to disable it, use the "+" sign. The command
has a lot of functions.

Flag Description

-r +r Make the named items read-only. They cannot subsequently be assigned values or
unset.

-i +i Give the named items the integer attribute. Values assigned to the variable will be
restricted to integer values.
If a non-integer value is assigned, an error is reported, or 0 (zero) is assigned instead.

-l +l Convert all uppercase letters to lowercase.

-u +u Convery all lowercase letters to uppercase.

-A Declare the named items to be associative arrays. This attribute cannot be unset.

-a Declare the named items to be indexed arrays. This attribute cannot be unset.

-p Displays the options and attributes of each variable name.

Conditions - The IF Conditions
With the IF condition, define that if a specific condition is true, then something will happen.

Besides, state what will happen if the condition is not true using the else command.

Furthermore, we could tell the interpreter to test another condition if the first condition is false using
the elif statement (stands for else if).

46

There are a lot of built-in checks and comparisons, but the handiest ones are as follows:
Syntax: if [$<var> -eq/-ne/-lt/-le/-gt/-ge <number>]

-eq Equals

-ne Not equals

-lt Less then

-le Less or equal

-gt Greater than

-ge Greater or equal

Syntax: if [-a/-e/-z $<var>]

-a True if FILE exists.

-e True if FILE exists.

-z True if VAR is non-empty.

To test if the variable "var1" exists, and then if it does exist, test if it is bigger than five or smaller.

47

Loops
We could use a loop when running a command or a sequence of commands several times.

For Loop
The for loop iterates over a list of items while inputting each item into a temporary variable and
performing the given commands.

Use the "seq" command to run over a list of numbers.

This loop will input the given number (1,2, etc.) into the temporary variable (var), and then the loop
will print the variable (using echo).

48

Add a word to each line of a text file.

Input a cost list into the for command.

49

While Loops
The Bash while loop is a control flow statement that allows code or commands to be executed
repeatedly until the given condition is true.

To run the loop five times.

More practical usage of while are infinity loops; this loop can keep a script running until either a
condition happens or if the user requests to exit (via a menu with an existing button). To create an
infinite loop, we must state an always-true condition.

50

Functions
To perform repetitive tasks more than once, use functions.

To call the function, type its name.

Define a function that will accept parameters while calling the function. These parameters would be
represented by $1, $2, and so on, or by a $@, which stands for all given parameters.

In addition, return a value to the code by using the return command and then capture using the $?

51

The tr Command

In the vast toolkit of Linux text processing utilities, the tr command stands out as a powerful tool for
translating or deleting characters. It's a filter that reads from standard input and writes to standard
output, making it particularly useful in command pipelines. In this article, we'll delve deep into the tr
command, exploring its functionalities, nuances, and practical applications.

Understanding the tr Command
The name tr stands for "translate" or "transliterate." At its core, the command is used to transform
one set of characters into another. It's especially handy for tasks like converting letter cases, deleting
specific characters, or squeezing repeating characters.

Basic Syntax
The basic syntax of the tr command is:

tr [OPTION]... SET1 [SET2]

Here, SET1 and SET2 are character sets. If only SET1 is provided, tr will use it to delete characters from
the input. If both SET1 and SET2 are provided, tr will replace characters from SET1 with the
corresponding characters in SET2.

Common Options

• -d: Delete characters in SET1.
• -s: Squeeze repeating characters.
• -c or -C: Complement the set of characters in SET1.
• -t: Truncate SET1 to the length of SET2.

Practical Examples

1. Convert Uppercase to Lowercase
To convert all uppercase letters in a text to lowercase:

echo "HELLO WORLD" | tr 'A-Z' 'a-z'

52

2. Delete Specific Characters
To delete all numeric characters from a text:

echo "Hello123 World456" | tr -d '0-9'

3. Squeeze Repeating Characters
To squeeze or replace repeating spaces with a single space:

echo "Hello World" | tr -s ' '

4. Complement Character Sets
To delete all characters except numeric ones:

echo "Hello123 World456" | tr -cd '0-9'

5. Translate Spaces to Tabs
To replace all spaces with tabs:

echo "Hello World" | tr ' ' '\t'

53

Advanced Usage: Character Classes
tr supports several character classes, which can simplify certain operations:

• [:alnum:]: Alphanumeric characters.
• [:alpha:]: Alphabetical characters.
• [:digit:]: Digits.
• [:lower:]: Lowercase letters.
• [:upper:]: Uppercase letters.
• [:space:]: Whitespace characters.

For instance, to convert all alphabetical characters to uppercase:

echo "Hello World" | tr '[:lower:]' '[:upper:]'

